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Critical behavior of ionic solids
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Phase transitions of lattice models of ionic crystals are studied by computer simulation. The nature of
order-disorder transitions on different crystal structures is established and compared with the behavior of
related Ising models. It is found that for both, continuous and first order transitions the basic features seem to
be similar to those of Ising systems.
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Critical behavior of ionic systems has become in rec
times a matter of wide interest@1–5#. The simplest continu-
ous model of ionic solutions or ionic compounds is the
stricted primitive model~RPM!. The phase diagram or th
RPM has been the subject of a number of recent stu
using computer simulation@3,5–8#. The results on liquid-
vapor equilibrium@5,6# suggest Ising-like criticality, but still
some questions regarding the methods of analysis of
simulation results@9,10# seem to be open. Dickman and Ste
introduced @2,11# the lattice restricted primitive mode
~LRPM!, where the charges of the system are located on
sites of a regular lattice. More flexible lattice schemes~with
different excluded volume criteria! were latter used by Pana
giotopoulos and Kumar@12# to link the behavior of continu-
ous and lattice approaches. Lattice models have the ad
tage of an efficient management of electrostatic interactio

Bresme, Vega, and Abascal@7# have recently reported th
existence of order-disorder transitions on close packing s
phases of the RPM. Lattice models with full occupancy
expected to describe accurately the phase behavior of i
crystals, where the displacements of ions from their equi
rium positions on the lattice are small. For certain lattic
one can expect to find continuous order-disorder transiti
~and critical behavior! due to electrostatic interactions. More
over, in many cases it is possible to define order parame
that take full advantage of the symmetry of the model in
analysis of results. To our knowledge no systematic stud
of the order-disorder transitions of the LRPM at full occ
pancy have been reported. In this paper we analyze this p
lem by means of Monte Carlo simulation.

Three cubic lattices have been studied: simple cubic~sc!,
body centered~bcc!, and face centered~fcc!, using periodic
boundary conditions. The charge of a given site is either1q
or 2q. Electroneutrality is preserved by keeping the co
straintN15N25N/2, whereN1 andN2 are, respectively,
the numbers of positive and negative charges andN is the
number of sites on the lattice. Ewald techniques@13# were
used to write down the potential energyU as a sum of pair
interactions@12,14# that depend on the vectorr i j between the
two sites,

U5(
iÞ j

A~r i j !sisj , ~1!

wheresi561. The values of the functionA(r i j ) are evalu-
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ated with high precision@15# before starting the simulation
and kept on tables for latter use.K is defined as the reduce
reverse temperature,

K5
q2

4peskBT
, ~2!

wheres is the distance between nearest neighbors,kB is the
Boltzmann constant,T is the absolute temperature, ande is
the permittivity of the medium. The reduced energy per p
ticle u is given by

u5
4pesU

Nq2
. ~3!

The basic move in the Monte Carlo simulation is the int
change of positions@7# between two charges with opposi
signs chosen at random. Two ensembles have been u
NVT ensemble for sc and bcc lattices and a microcanon
ensemble (NVE) on an extended system for fcc lattice. Th
NVE procedure resembles, to some extent, the so-ca
Gaussian ensemble techniques@16#. In practice we consider
an extended system with a numbern of additional degrees o
freedom (n53N in the current application!, which can be
thought as ‘‘virtual’’ momenta of the particles, and take t
form of independent classical harmonic oscillators. The to
energy of the extended systemE is fixed. Integrating out the
contribution of the extra degrees of freedom to the micro
nonical partition function, we find that the probability,Pi of
a certain configuration with potential energyUi is given by

Pi}~E2Ui !
(n21)/2. ~4!

The temperature of the system is related with the mean
ues of the ‘‘kinetic’’ energy as

~n21!kBT.2~E2^U&!. ~5!

This kind of approach@16# makes easier the identification o
weak first order transitions~which exhibit a loop on aT
2E plot! and the precise location of the transition tempe
ture.

At conditions close to the order-disorder transition t
number of accepted moves is small (1% –6%)~especially
for large systems!. In order to save computing time we kep
tables containing the value of the electric potential on e
lattice site. This way, only for accepted steps a full count
©2001 The American Physical Society01-1
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TABLE I. Results for LRPM on a bcc lattice (Kc52.077).

L Kc(L) L2b/n^m2(Kc)& cv(Kc)L
322/n u(Kc)

4 2.055~10! 1.727~19! 1.754~18! 20.7331~11!

5 2.068~7! 1.750~33! 1.94~4! 20.7210~19!

6 2.071~7! 1.792~30! 2.09~12! 20.7146~10!

7 2.072~6! 1.760~35! 2.20~6! 20.7088~14!

8 2.073~3! 1.813~25! 2.30~7! 20.7064~12!

9 2.074~4! 1.826~26! 2.30~12! 20.7039~8!

10 2.075~3! 1.889~35! 2.53~13! 20.7027~14!
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of the interactions between the sites that interchan
charges and the rest of the system is required.

Simulations on theNVT ensemble were carried out fo
several system sizes. For sc lattice (N5L3), with L5 4, 6, 8,
10, and 12 and for bcc lattice (N52L3), with L5 4, 5, 6, 7,
8, 9, and 10. After some preliminary short runs to loca
approximately the critical pointsKc we have run long trajec
tories (53106 attempts of interchange per site! for a number
of values ofK aroundKc ~15 points in the range@2.04,2.18#
for the bcc lattice and 16 points in the range@1.90,2.05# for
the sc lattice!. The properties were evaluated over the seco
half of each trajectory. On sc and bcc lattices an accu
order parameter,m, to follow the transition is that of the
antiferromagnetic Ising-1/2 models@2#. In both cases the
order-disorder transition is continuous. Finite-size scal
~FSS! methods have been used to locate and analyze
nature of the transition. A parameterG @17#, closely related
with the fourth order cumulant introduced by Binder@18#, is
defined as

G5
1

2 F32
^m4&

^m2&2G . ~6!

The value ofG in the thermodynamic limit is expected to b
equal to zero~disordered phase! or to 1 ~ordered phase!,
except at the critical point where it takes a nontrivial val
Gc , which is expected to be invariant~except for small cor-
rections to scaling! with the system size@19#. As a first step
to locate the critical point we have used the simulation
sults to interpolate the values ofK where the curvesG(K,L)
for two different values ofL cross. For the bcc lattice, con
sidering systems withL>5 the crosses occur in range
2.074,K,2.083; 0.70<G<0.75. For the sc lattice the re
sults are: 1.939<K<1.951; 0.69<G<0.74. Both ranges o
G are close to the estimation ofGc for the three-dimensiona
3D-Ising universality class in periodic systems with cub
04250
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symmetry @20# Gc
I '0.698. The deviations of the crossin

values ofG with respect toGc
I are about the same order th

those found in simulation of Ising systems with similar siz
@20#. The corresponding value for classical critical behav
~i.e., that of one component systems with long-range inter
tions@21,22#! is Gc

MF'0.406@21,23#. In what follows, Ising-
like behavior ~i.e., Gc.0.698, and critical exponents:b
.0.326,u.0.52,n.0.630@20#! will be assumed. Apparen
critical coupling constants for finite-size systems@19#,
Kc(L), can be evaluated by the interpolating on the simu
tion results to fulfill: G„Kc(L),L…5Gc . The results are
shown in Tables I and II. These values are expected to s
@19# as

Kc2Kc~L !}L2(11u)/n. ~7!

The values ofKc were estimated using last equation,

Kc
sc51.94260.005

~8!
Kc

bcc52.07760.003.

At the apparent critical points,Kc(L), the order paramete
distribution function is expected to be universal@19,24# ~for
L not too small!. The results for two cases on the bcc latti
(L56 and L58) are compared in Fig. 1 with the distribu
tion at the scaling limit for the 3D-Ising class@24#. A good
agreement is observed~better forL58, as expected!. A fur-
ther check of the previous estimations ofKc can be carried
out by using the values of the order parameter^m2& for K
.Kc to extrapolateKc . This was performed taking only th
values ofK where ^m2(L)& converge within error bars fo
the two largest values ofL on each lattice. The critical poin
is estimated by fitting the results@10# to

^m2&1/25~K2Kc!
b@A1B~K2Kc!

u#, ~9!
TABLE II. Results for LRPM on a sc lattice (Kc51.942).

L Kc(L) L2b/n^m2(Kc)& cvL322/n u(Kc)

4 1.913~18! 1.885~21! 1.094~9! 20.7353~11!

6 1.932~9! 2.10~4! 1.450~21! 20.7131~12!

8 1.938~7! 2.15~4! 1.606~29! 20.7031~8!

10 1.940~6! 2.22~9! 1.72~4! 20.6988~11!

12 1.940~5! 2.28~10! 1.87~10! 20.6960~20!
1-2
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where b and u are fixed parameters. In both cases eig
points were used:KP@2.11,2.18# for bcc lattice andK
P@1.98,2.05# for the sc lattice. The results are shown
Table III. The estimated values ofKc agree within error bars
with those given in Eq.~8!. According to FSS statements,
the critical point Kc , the following scaling behavior
@19,20,24# is expected for the order parameter and the h
capacity per particlecv :

^m2~Kc!&}L22b/n, ~10!

cv~Kc ,L !}L2312/n. ~11!

In Tables I and II the quantitiesL2b/n^m2(Kc)& and
cv(Kc ,L)L322/n ~which are expected to be invariant fo
large values ofL) are reported for both lattices and differe
sizes. It seems clear that the scaling invariance has not
reached within the system sizes considered. Similar tre
have been found in systems with short range interacti
@19,20#. In addition we have estimated the value of the p
tential energy at the critical pointuc using the previous esti
mations ofKc @Eq. 8# and the scaling relation@19#,

uc2u~Kc ,L !}L2311/n. ~12!

The results foruc are

uc
sc520.68560.011,

~13!

uc
bcc520.69160.008.

FIG. 1. Critical order parameter distributions. Continuous lin
Limiting Ising distribution from Ref.@24#. Dashed line~on the right
side!: bcc lattice withL56. Dotted line~on the left!: bcc lattice
with L58. The value ofm is reduced to get distributions with un
variance.

TABLE III. Fitting of the order parameter@Eq. ~9!# as a function
of K for sc and bcc lattices.

Lattice Kc A B

sc 1.946~10! 2.05 21.28
bcc 2.077~13! 2.06 21.19
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The values ofu(Kc ,L) ~collected in Tables I and II! are
consistent~within error bars! with the scaling relation given
in Eq. ~12!.

The results shown for ionic lattices with a continuo
order-disorder transition seem to assess the likelihood o
Ising-like critical behavior and the reliability of the estima
tions of critical temperatures and energies.

Simulations of the LRPM on fcc lattice usingNVT en-
semble showed hysteresis effects, specially for large si
Therefore, the transition is likely to be first order. This sc
nario was pointed out as one of the possibilities in Ref@7#. In
order to clarify this point and to locate precisely the tran
tion, simulations on the extendedNVE ensemble were per
formed for three system sizes:L5 4, 6, and 8~with N
54L3). After preliminary short runs to locate the transitio
a sequence of simulations fromE* /N520.25 to E* /N
520.42 ~18 points! were carried out for each system siz
The reverse sequences of states were also simulated to
card hysteresis effects. Each simulation run implied;5
3105 moves per particle. The transition was found to
discontinuous. The value ofK at the transitionKc was evalu-
ated by performing a Maxwell construction over the plot
^K& versusE ~See Fig 2!. Numerical results are reported i
Table IV.

These results on fcc lattices can be related with the
havior of the fcc Ising antiferromagnet with nearest-neighb
and next-nearest neighbor pair interactions@25#. In fact the

: FIG. 2. Results of simulations of the fcc lattice for three diffe
ent system sizes.K is the inverse of the reduced temperature,E* /N
is the total energy per particle~see the text for details!. Diamonds
and dashed line represent results forL54. Filled squares and dotte
line (L56). Opaque circles and continuous line (L58). Horizontal
continuous line marks the value ofKc for L58

TABLE IV. Results of the LRPM on a fcc lattice for differen
system sizes.Kc is the estimated reverse temperature at the tra
tion, ud anduo are, respectively, the reduced potential energies
particle of disordered and ordered phases at the transition.Du is the
reduced latent heat per particle of the transition atK5Kc .

L Kc ud uo Du

4 3.391~17! 20.710~1! 20.813~1! 0.103~1!

6 3.450~17! 20.706~1! 20.815~1! 0.108~1!

8 3.459~12! 20.706~1! 20.815~1! 0.109~1!
1-3
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order-disorder transition in the LRPM is completely ana
gous to that of the type-III fcc antiferromagnets@25# that is
also discontinuous and has the same ground state struc

From the results presented here we can conclude tha
critical behavior of the fully occupied LRPM seems to
similar to that of systems with short range interactions. N
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ertheless, larger systems must be considered to reach d
tive conclusions.
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