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Critical behavior of ionic solids
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Phase transitions of lattice models of ionic crystals are studied by computer simulation. The nature of
order-disorder transitions on different crystal structures is established and compared with the behavior of
related Ising models. It is found that for both, continuous and first order transitions the basic features seem to
be similar to those of Ising systems.
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Critical behavior of ionic systems has become in recentaited with high precisiofl5] before starting the simulation
times a matter of wide intereft—5]. The simplest continu- and kept on tables for latter udé.is defined as the reduced
ous model of ionic solutions or ionic compounds is the re-reverse temperature,
stricted primitive modelRPM). The phase diagram or the
RPM has been the subject of a number of recent studies K — q
using computer simulatiofi3,5—§. The results on liquid- AmeokgT’
vapor equilibrium[5,6] suggest Ising-like criticality, but still
some questions regarding the methods of analysis of th&hereo is the distance between nearest neighblogss the
simulation result§9,10] seem to be open. Dickman and Stell Boltzmann constanfT is the absolute temperature, aads
introduced [2,11] the lattice restricted primitive model the permittivity of the medium. The reduced energy per par-
(LRPM), where the charges of the system are located on thBcle u is given by
sites of a regular lattice. More flexible lattice schemegh
different excluded volume criteriavere latter used by Pana- U= Ameol
giotopoulos and Kumdrl2] to link the behavior of continu- Ng?
ous and lattice approaches. Lattice models have the advan-
tage of an efficient management of electrostatic interactionsThe basic move in the Monte Carlo simulation is the inter-

Bresme, Vega, and Abasdal] have recently reported the change of position§7] between two charges with opposite
existence of order-disorder transitions on close packing solidigns chosen at random. Two ensembles have been used:
phases of the RPM. Lattice models with full occupancy areNVT ensemble for sc and bcc lattices and a microcanonical
expected to describe accurately the phase behavior of ioniensemble I{VE) on an extended system for fcc lattice. The
crystals, where the displacements of ions from their equilibNVE procedure resembles, to some extent, the so-called
rium positions on the lattice are small. For certain latticesGaussian ensemble techniqués$]. In practice we consider
one can expect to find continuous order-disorder transitionan extended system with a numbeof additional degrees of
(and critical behavigrdue to electrostatic interactions. More- freedom (¢=3N in the current application which can be
over, in many cases it is possible to define order parametethought as “virtual” momenta of the particles, and take the
that take full advantage of the symmetry of the model in theform of independent classical harmonic oscillators. The total
analysis of results. To our knowledge no systematic studiesnergy of the extended systdfis fixed. Integrating out the
of the order-disorder transitions of the LRPM at full occu- contribution of the extra degrees of freedom to the microca-
pancy have been reported. In this paper we analyze this prolronical partition function, we find that the probability; of

2

2

©)

lem by means of Monte Carlo simulation. a certain configuration with potential energly is given by
Three cubic lattices have been studied: simple cdyg D
body centeredbcc), and face centereticc), using periodic Pic(E— U172 (4)

boundary conditions. The charge of a given site is eithgr
or —q. Electroneutrality is preserved by keeping the con-
straintN, =N_=N/2, whereN, andN_ are, respectively,
the numbers of positive and negative charges ldnd the (v—1)kgT=2(E—(U)). (5)
number of sites on the lattice. Ewald techniqyi28] were
used to write down the potential enerfyas a sum of pair This kind of approachil6] makes easier the identification of
interactiond 12,14 that depend on the vectoy between the weak first order transitiongwhich exhibit a loop on ar
two sites, —E plot) and the precise location of the transition tempera-
ture.
At conditions close to the order-disorder transition the
U=2 A(ryj)sss;, (1) number of accepted moves is small (1%—6%3¥pecially
' for large systems In order to save computing time we kept
tables containing the value of the electric potential on each
wheres;=*1. The values of the functioA(r;;) are evalu- lattice site. This way, only for accepted steps a full counting

The temperature of the system is related with the mean val-
ues of the “kinetic” energy as
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TABLE I. Results for LRPM on a bcc latticek(.=2.077).

L Ke(L) L2 (m2(K)) c,(KgL3-2" u(Ko)

4 2.05510) 1.72719) 1.75418) —0.733111)

5 2.0687) 1.75Q33) 1.944) —0.721419)

6 2.0717) 1.79230) 2.0912) —0.714410)

7 2.0726) 1.76Q35) 2.2006) —0.708814)

8 2.0733) 1.81325) 2.307) —0.706412)

9 2.0744) 1.82626) 2.3012) —0.70398)
10 2.075%3) 1.88935) 2.5313 —0.702714)

of the interactions between the sites that interchangedymmetry[20] G.~0.698. The deviations of the crossing
charges and the rest of the system is required. values ofG with respect taG., are about the same order that
Simulations on theNVT ensemble were carried out for those found in simulation of Ising systems with similar sizes
several system sizes. For sc lattidé=(L*), with L= 4, 6,8,  [20]. The corresponding value for classical critical behavior
10, and 12 and for bcc latticdN=2L°%), with L= 4,5, 6,7,  (i.e., that of one component systems with long-range interac-
8, 9, and 10. After some preliminary short runs to locatetions[21,22) is GQ"F~O.406[21,2:§. In what follows, Ising-
approximately the critical points; we have run long trajec- |ike behavior (i.e., G,~0.698, and critical exponents3
tories (5x 10° attempts of interchange per sifer a number  ~ 326, 9=0.52, »=0.630[20]) will be assumed. Apparent
of values ofK aroundK_ (15 points in the rangg2.04,2.18  critical coupling constants for finite-size systenis9],
for the bcc lattice and 16 points in the range90,2.03 for K (L), can be evaluated by the interpolating on the simula-
the sc latticg The properties were evaluated over the secongion results to fulfill: G(K(L),L)=G.. The results are

half of each trajectory. On sc and bcc lattices an accuratghown in Tables | and I. These values are expected to scale
order parameterm, to follow the transition is that of the [19] as

antiferromagnetic Ising-1/2 mode[®]. In both cases the

order-disorder transition is continuous. Finite-size scaling KC_KC(L)OCL*(HH)/V_ (7
(FSS methods have been used to locate and analyze the

nature of the transition. A paramet€r[17], closely related The values oK. were estimated using last equation,
with the fourth order cumulant introduced by Bindé8], is

defined as K$=1.942+0.005

1 (8)

G=E3

()
(m?)?

© KP¢¢=2,077+0.003.

At the apparent critical point¥ (L), the order parameter
The value ofG in the thermodynamic limit is expected to be distribution function is expected to be univera,24 (for
equal to zero(disordered phageor to 1 (ordered phase L nottoo small. The results for two cases on the bcc lattice
except at the critical point where it takes a nontrivial value(L=6 and L=28) are compared in Fig. 1 with the distribu-
G., which is expected to be invariatgxcept for small cor- tion at the scaling limit for the 3D-Ising cla$&4]. A good
rections to scalingwith the system siz€19]. As a first step  agreement is observébetter forL=8, as expectedA fur-
to locate the critical point we have used the simulation rether check of the previous estimationsKf can be carried
sults to interpolate the values Kfwhere the curve§(K,L)  out by using the values of the order paramet@r) for K
for two different values ot cross. For the bcc lattice, con- >K_ to extrapolateK .. This was performed taking only the
sidering systems with.=5 the crosses occur in ranges: values ofK where(m?(L)) converge within error bars for
2.074<K<2.083; 0.76=G=0.75. For the sc lattice the re- the two largest values df on each lattice. The critical point
sults are: 1.93¢K=<1.951; 0.68<G=0.74. Both ranges of is estimated by fitting the resulf40] to
G are close to the estimation & for the three-dimensional
3D-Ising universality class in periodic systems with cubic (mA)12=(K—K)P[A+B(K—K)], 9)

TABLE Il. Results for LRPM on a sc latticeK(.=1.942).

L Ke(L) L2 (m?(K.)) c, L3 u(Ke)

4 1.91318) 1.88521) 1.0949) —0.735311)

6 1.9329) 2.104) 1.45021) —0.713112)

8 1.9387) 2.154) 1.60629) —0.70318)
10 1.9406) 2.229) 1.724) —0.698811)
12 1.94@5) 2.2810) 1.8710 —0.696@20)
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FIG. 1. Critical order parameter distributions. Continuous line:  FIG. 2. Results of simulations of the fcc lattice for three differ-
Limiting Ising distribution from Ref[24]. Dashed lingon the right  ent system sizeX is the inverse of the reduced temperatut&/N
side: bcc lattice withL=6. Dotted line(on the lefi: bcc lattice  is the total energy per particisee the text for detailsDiamonds
with L=8. The value oimis reduced to get distributions with unit and dashed line represent resultslfer4. Filled squares and dotted
variance. line (L=6). Opaque circles and continuous lirle<8). Horizontal

continuous line marks the value Kf, for L=8
where B8 and @ are fixed parameters. In both cases eight
points were usedKe[2.11,2.1§ for bcc lattice andK  The values ofu(K.,L) (collected in Tables I and )lare
€[1.98,2.09 for the sc lattice. The results are shown in consisteniwithin error barg with the scaling relation given
Table Ill. The estimated values &f; agree within error bars in Eq. (12).
with those given in Eq(8). According to FSS statements, at  The results shown for ionic lattices with a continuous
the critical point K., the following scaling behavior order-disorder transition seem to assess the likelihood of an
[19,20,24 is expected for the order parameter and the healsing-like critical behavior and the reliability of the estima-

capacity per particle,, : tions of critical temperatures and energies.
Simulations of the LRPM on fcc lattice usingVT en-
(m?(Kg))oc L= 2P7, (100 semble showed hysteresis effects, specially for large sizes.

Therefore, the transition is likely to be first order. This sce-
nario was pointed out as one of the possibilities in RéfIn
order to clarify this point and to locate precisely the transi-
- tion, simulations on the extendédlvVE ensemble were per-
In Tables | and Il the quantities®'"(m*(K;)) and  formed for three system sizet= 4, 6, and 8(with N

3-2lv ; i H
Cy(Ke, L)L (which are expected to be invariant for — 4| 3) After preliminary short runs to locate the transition,
large values ot.) are reported for both lattices and different 4 sequence of simulations frof*/N=—0.25 to E*/N

sizes. It seems clear that the'scaling in'variance .ha.s not been_ g 4o (18 points were carried out for each system size.
reached within the system sizes considered. Similar trendgpe reverse sequences of states were also simulated to dis-
have been found in systems with short range interactiong, g nysteresis effects. Each simulation run implied
[19,20. In addition we have estimated the value of the po-y 15 moves per particle. The transition was found to be
tential energy at the critical poin; using the previous esti-  giscontinuous. The value & at the transitiork . was evalu-
mations ofK [Eq. 8| and the scaling relatiofi9], ated by performing a Maxwell construction over the plot of
(K) versusE (See Fig 2. Numerical results are reported in

Cc,(Kg,L)yocL™3%2, (11)

Ug—u(Kg, L)L =31, (12 Table IV.
These results on fcc lattices can be related with the be-
The results fowu, are havior of the fcc Ising antiferromagnet with nearest-neighbor

and next-nearest neighbor pair interacti¢®s]. In fact the

us=—0.685-0.011,
(13) TABLE IV. Results of the LRPM on a fcc lattice for different
system sizesK. is the estimated reverse temperature at the transi-
tion, uy andu, are, respectively, the reduced potential energies per
particle of disordered and ordered phases at the transitions the
TABLE lIl. Fitting of the order parametdiEq. (9)] as a function ~ reduced latent heat per particle of the transitioiatK .
of K for sc and bcc lattices.

ulcc=—0.691+0.008.

L K¢ Uqg Uo Au
Lattice K A B
° 4 3.39117) -0.71Q1) —0.8131) 0.1031)
sc 1.94610) 2.05 -1.28 6 3.45@17) —0.7061) —-0.8151) 0.1081)
bcc 2.07713) 2.06 —-1.19 8 3.45912) —0.70641) —0.81581) 0.1091)
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order-disorder transition in the LRPM is completely analo-ertheless, larger systems must be considered to reach defini-

gous to that of the type-Ill fcc antiferromagng®5] that is

tive conclusions.
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